网络化协同制造系统的跨层生产优化调度
这是一篇关于能效优化,协同层,智能优化算法,案例推理,ID3决策树的论文, 主要内容为网络化协同制造系统是一种信息高度集成的智能制造模式,其协同层具有大数据集成的知识库以及知识推理、数据挖掘、信息交互等服务功能,而目前大部分能效调度优化方法在优化过程使用的运算资源局限于企业层、车间层等边缘层,对于利用系统的协同层知识库与服务进一步提高能效的优化调度的研究较为缺乏,此外,网络化协同制造系统的生产过程具有有柔性制造、多工厂协同生产等特征,这使得能效分析与优化变得极其困难,因此,网络化协同制造系统跨越协同层与边缘层生产优化调度的研究具有极其重要的意义。本文针对在网络化协同制造系统中单作业车间与分布式多工厂的能效优化问题展开研究,提出了相应的算法,取得了良好的优化调度效果,主要工作如下:(1)对网络化协同制造系统的信息流和能量流特征、主控因素、外部干扰进行分析,面向能效优化控制目标,针对边缘层独立制造车间的实时调度,及云端网络化分布式多工厂协同制造的虚拟资源优化调度问题,分别建立其对应的优化模型和跨层协同机制。(2)针对单作业车间能效优化问题,提出了一种融合案例推理与混合群智能的调度优化方法。该方法在粒子群优化算法框架下,融合了遗传算法交叉变异算子,并基于调度问题的特征采用三元表示法将协同层知识库中的历史调度案例信息资源转化为数字表示形式,以此进行相似度运算,将其引入到调度优化算法种群筛选后的补充个体生成过程,提高后期迭代过程中的多样性。通过仿真与分析验证了该方法的有效性。(3)针对分布式多工厂能效优化的问题,提出一种融合了ID3决策树的高斯粒子群优化嵌套寻优算法,该算法将异地工厂看做独立的加工单元,把加工单元订单分配寻优作为作为嵌套寻优的外层,调度优化作为内层,多个单元寻优决策结果与云端外部寻优交互反馈,同时还引入了精英保留策略,并将ID3决策树技术融入外层寻优粒子生成过程,降低外层寻优过程中的随机性。最后,通过仿真对比实验验证方法的有效性。(4)根据以上的理论研究以及工厂的实际需求,使用Thymeleaf等前端技术搭建了前台可视化页面,同时,使用Spring Boot、Mybatis、Hadoop等大数据微服务信息技术对后台应用模块的逻辑功能进行了开发,并将开发后的系统应用于无锡某机床股份有限公司,实现了良好调度优化效果。
网络化协同制造系统的跨层生产优化调度
这是一篇关于能效优化,协同层,智能优化算法,案例推理,ID3决策树的论文, 主要内容为网络化协同制造系统是一种信息高度集成的智能制造模式,其协同层具有大数据集成的知识库以及知识推理、数据挖掘、信息交互等服务功能,而目前大部分能效调度优化方法在优化过程使用的运算资源局限于企业层、车间层等边缘层,对于利用系统的协同层知识库与服务进一步提高能效的优化调度的研究较为缺乏,此外,网络化协同制造系统的生产过程具有有柔性制造、多工厂协同生产等特征,这使得能效分析与优化变得极其困难,因此,网络化协同制造系统跨越协同层与边缘层生产优化调度的研究具有极其重要的意义。本文针对在网络化协同制造系统中单作业车间与分布式多工厂的能效优化问题展开研究,提出了相应的算法,取得了良好的优化调度效果,主要工作如下:(1)对网络化协同制造系统的信息流和能量流特征、主控因素、外部干扰进行分析,面向能效优化控制目标,针对边缘层独立制造车间的实时调度,及云端网络化分布式多工厂协同制造的虚拟资源优化调度问题,分别建立其对应的优化模型和跨层协同机制。(2)针对单作业车间能效优化问题,提出了一种融合案例推理与混合群智能的调度优化方法。该方法在粒子群优化算法框架下,融合了遗传算法交叉变异算子,并基于调度问题的特征采用三元表示法将协同层知识库中的历史调度案例信息资源转化为数字表示形式,以此进行相似度运算,将其引入到调度优化算法种群筛选后的补充个体生成过程,提高后期迭代过程中的多样性。通过仿真与分析验证了该方法的有效性。(3)针对分布式多工厂能效优化的问题,提出一种融合了ID3决策树的高斯粒子群优化嵌套寻优算法,该算法将异地工厂看做独立的加工单元,把加工单元订单分配寻优作为作为嵌套寻优的外层,调度优化作为内层,多个单元寻优决策结果与云端外部寻优交互反馈,同时还引入了精英保留策略,并将ID3决策树技术融入外层寻优粒子生成过程,降低外层寻优过程中的随机性。最后,通过仿真对比实验验证方法的有效性。(4)根据以上的理论研究以及工厂的实际需求,使用Thymeleaf等前端技术搭建了前台可视化页面,同时,使用Spring Boot、Mybatis、Hadoop等大数据微服务信息技术对后台应用模块的逻辑功能进行了开发,并将开发后的系统应用于无锡某机床股份有限公司,实现了良好调度优化效果。
网络化协同制造系统的跨层生产优化调度
这是一篇关于能效优化,协同层,智能优化算法,案例推理,ID3决策树的论文, 主要内容为网络化协同制造系统是一种信息高度集成的智能制造模式,其协同层具有大数据集成的知识库以及知识推理、数据挖掘、信息交互等服务功能,而目前大部分能效调度优化方法在优化过程使用的运算资源局限于企业层、车间层等边缘层,对于利用系统的协同层知识库与服务进一步提高能效的优化调度的研究较为缺乏,此外,网络化协同制造系统的生产过程具有有柔性制造、多工厂协同生产等特征,这使得能效分析与优化变得极其困难,因此,网络化协同制造系统跨越协同层与边缘层生产优化调度的研究具有极其重要的意义。本文针对在网络化协同制造系统中单作业车间与分布式多工厂的能效优化问题展开研究,提出了相应的算法,取得了良好的优化调度效果,主要工作如下:(1)对网络化协同制造系统的信息流和能量流特征、主控因素、外部干扰进行分析,面向能效优化控制目标,针对边缘层独立制造车间的实时调度,及云端网络化分布式多工厂协同制造的虚拟资源优化调度问题,分别建立其对应的优化模型和跨层协同机制。(2)针对单作业车间能效优化问题,提出了一种融合案例推理与混合群智能的调度优化方法。该方法在粒子群优化算法框架下,融合了遗传算法交叉变异算子,并基于调度问题的特征采用三元表示法将协同层知识库中的历史调度案例信息资源转化为数字表示形式,以此进行相似度运算,将其引入到调度优化算法种群筛选后的补充个体生成过程,提高后期迭代过程中的多样性。通过仿真与分析验证了该方法的有效性。(3)针对分布式多工厂能效优化的问题,提出一种融合了ID3决策树的高斯粒子群优化嵌套寻优算法,该算法将异地工厂看做独立的加工单元,把加工单元订单分配寻优作为作为嵌套寻优的外层,调度优化作为内层,多个单元寻优决策结果与云端外部寻优交互反馈,同时还引入了精英保留策略,并将ID3决策树技术融入外层寻优粒子生成过程,降低外层寻优过程中的随机性。最后,通过仿真对比实验验证方法的有效性。(4)根据以上的理论研究以及工厂的实际需求,使用Thymeleaf等前端技术搭建了前台可视化页面,同时,使用Spring Boot、Mybatis、Hadoop等大数据微服务信息技术对后台应用模块的逻辑功能进行了开发,并将开发后的系统应用于无锡某机床股份有限公司,实现了良好调度优化效果。
甘孜电力营销管理系统设计与实现
这是一篇关于ERP,数据挖掘,K-means,ID3决策树的论文, 主要内容为随着供电企业的快速发展,行业内的竞争越来越大,要想提高电力企业的核心竞争力,实现利益最大化,就必须认清电力营销当前的形势,面对新的变化能够拿出高速有效的解决方案。为了达到这个目标,甘孜电力公司非常急需一套客户管理系统来管理用户资源,用于从海量的客户信息中挖掘客户价值,提升公司的核心竞争力。针对这一问题,结合自身工作,以甘孜电力为实际背景,本文采用JAVAEE技术、SSM框架、以及把数据挖掘等算法融入到甘孜电力营销管理系统开发中的方式对系统进行了设计实现,具体研究的内容和工作如下:(1)对系统的研究现状、研究意义以及需求做了全面的分析,分析了ERP系统的结构、组成,并采用MVC的思想对系统进行了设计开发。(2)提出一种基于K-means和ID3决策树的客户分类管理方法,该方法使得通过对客户数据进行分析,为客户管理提供数据支撑。利用GM(1,1)和客户用电量历史数据对未来用电的预测,同时设计了一种模型,对客户欠费风险进行评估。(3)系统的实现采用SSM框架,它将整个系统划分为四个层次,分别是表现层、控制层、业务逻辑层、数据访问层。本文利用SSM框架对CRM系统进了实现并进行测试。系统使用JAVA以及其它前端的技术完成程序的开发,以SQL server数据库作为支撑。经过测试分析,系统能够稳定的运行,同时核心功能得以实现,基本达到了预期的要求。
网络化协同制造系统的跨层生产优化调度
这是一篇关于能效优化,协同层,智能优化算法,案例推理,ID3决策树的论文, 主要内容为网络化协同制造系统是一种信息高度集成的智能制造模式,其协同层具有大数据集成的知识库以及知识推理、数据挖掘、信息交互等服务功能,而目前大部分能效调度优化方法在优化过程使用的运算资源局限于企业层、车间层等边缘层,对于利用系统的协同层知识库与服务进一步提高能效的优化调度的研究较为缺乏,此外,网络化协同制造系统的生产过程具有有柔性制造、多工厂协同生产等特征,这使得能效分析与优化变得极其困难,因此,网络化协同制造系统跨越协同层与边缘层生产优化调度的研究具有极其重要的意义。本文针对在网络化协同制造系统中单作业车间与分布式多工厂的能效优化问题展开研究,提出了相应的算法,取得了良好的优化调度效果,主要工作如下:(1)对网络化协同制造系统的信息流和能量流特征、主控因素、外部干扰进行分析,面向能效优化控制目标,针对边缘层独立制造车间的实时调度,及云端网络化分布式多工厂协同制造的虚拟资源优化调度问题,分别建立其对应的优化模型和跨层协同机制。(2)针对单作业车间能效优化问题,提出了一种融合案例推理与混合群智能的调度优化方法。该方法在粒子群优化算法框架下,融合了遗传算法交叉变异算子,并基于调度问题的特征采用三元表示法将协同层知识库中的历史调度案例信息资源转化为数字表示形式,以此进行相似度运算,将其引入到调度优化算法种群筛选后的补充个体生成过程,提高后期迭代过程中的多样性。通过仿真与分析验证了该方法的有效性。(3)针对分布式多工厂能效优化的问题,提出一种融合了ID3决策树的高斯粒子群优化嵌套寻优算法,该算法将异地工厂看做独立的加工单元,把加工单元订单分配寻优作为作为嵌套寻优的外层,调度优化作为内层,多个单元寻优决策结果与云端外部寻优交互反馈,同时还引入了精英保留策略,并将ID3决策树技术融入外层寻优粒子生成过程,降低外层寻优过程中的随机性。最后,通过仿真对比实验验证方法的有效性。(4)根据以上的理论研究以及工厂的实际需求,使用Thymeleaf等前端技术搭建了前台可视化页面,同时,使用Spring Boot、Mybatis、Hadoop等大数据微服务信息技术对后台应用模块的逻辑功能进行了开发,并将开发后的系统应用于无锡某机床股份有限公司,实现了良好调度优化效果。
网络化协同制造系统的跨层生产优化调度
这是一篇关于能效优化,协同层,智能优化算法,案例推理,ID3决策树的论文, 主要内容为网络化协同制造系统是一种信息高度集成的智能制造模式,其协同层具有大数据集成的知识库以及知识推理、数据挖掘、信息交互等服务功能,而目前大部分能效调度优化方法在优化过程使用的运算资源局限于企业层、车间层等边缘层,对于利用系统的协同层知识库与服务进一步提高能效的优化调度的研究较为缺乏,此外,网络化协同制造系统的生产过程具有有柔性制造、多工厂协同生产等特征,这使得能效分析与优化变得极其困难,因此,网络化协同制造系统跨越协同层与边缘层生产优化调度的研究具有极其重要的意义。本文针对在网络化协同制造系统中单作业车间与分布式多工厂的能效优化问题展开研究,提出了相应的算法,取得了良好的优化调度效果,主要工作如下:(1)对网络化协同制造系统的信息流和能量流特征、主控因素、外部干扰进行分析,面向能效优化控制目标,针对边缘层独立制造车间的实时调度,及云端网络化分布式多工厂协同制造的虚拟资源优化调度问题,分别建立其对应的优化模型和跨层协同机制。(2)针对单作业车间能效优化问题,提出了一种融合案例推理与混合群智能的调度优化方法。该方法在粒子群优化算法框架下,融合了遗传算法交叉变异算子,并基于调度问题的特征采用三元表示法将协同层知识库中的历史调度案例信息资源转化为数字表示形式,以此进行相似度运算,将其引入到调度优化算法种群筛选后的补充个体生成过程,提高后期迭代过程中的多样性。通过仿真与分析验证了该方法的有效性。(3)针对分布式多工厂能效优化的问题,提出一种融合了ID3决策树的高斯粒子群优化嵌套寻优算法,该算法将异地工厂看做独立的加工单元,把加工单元订单分配寻优作为作为嵌套寻优的外层,调度优化作为内层,多个单元寻优决策结果与云端外部寻优交互反馈,同时还引入了精英保留策略,并将ID3决策树技术融入外层寻优粒子生成过程,降低外层寻优过程中的随机性。最后,通过仿真对比实验验证方法的有效性。(4)根据以上的理论研究以及工厂的实际需求,使用Thymeleaf等前端技术搭建了前台可视化页面,同时,使用Spring Boot、Mybatis、Hadoop等大数据微服务信息技术对后台应用模块的逻辑功能进行了开发,并将开发后的系统应用于无锡某机床股份有限公司,实现了良好调度优化效果。
本文内容包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主题。发布者:毕设导航 ,原文地址:https://m.bishedaima.com/lunwen/50377.html