低成本小型无人机影像智能采集系统的设计与实现
这是一篇关于无人机,低成本,通讯协议,PPK,智能采集,管理系统的论文, 主要内容为随着科学技术的不断发展,无人机系统已经逐步融入社会发展的各个方面,成为不可或缺的民用设备与军事设备。无人机技术作为一种及时、有效地获取地物信息的技术手段,已然在国土资源、能源、商业、农业、警用、医疗和防灾减灾等领域有广泛的应用。目前,商业航测无人机由于购置和维护成本较高、维护周期长和系统封闭等原因,造成企业购置风险大、投入产出比高。因此本文基于Pixhawk开源飞行控制系统,研发一套定位精度较高且可以实现数据共享的低成本无人机影像智能采集系统,该系统可以满足国土调查中外业举证方面的需求。小型无人机测绘遥感系统由传感器、飞行平台、飞控系统、地面监控系统和遥控遥测链路构成。本文针对无人机采集与管理数据效率较低的问题,借助Micro Air Vehicle Link协议实现无人机与地面站之间的串口通讯,控制二者协同工作完成数据的采集。利用Pixhawk飞行控制系统控制信号设计完成图像采集模块,采用NEO-M8T低成本GNSS接收机构建差分测量系统,提高无人机的定位精度。最终将无人机获取的图像和坐标数据上传至数据管理系统,实现数据的智能化采集与管理,取得研究成果如下:(1)研发及搭建了无人机机载平台。针对无人机航空摄影图像的采集要求,首先确定了四旋翼无人机的主体设计参数及控制系统,选取相应硬件,实现无人机机载平台的搭建,确保系统的灵活性和稳定性。然后通过xcopter Calc评估软件和实际飞行对多旋翼无人机机载平台进行了测试,结果表明机载平台布局合理、稳定性较好。(2)设计并实现了航空摄影图像与GNSS接收机数据的同步采集。依据Pixhawk飞行控制系统控制信号格式和相机快门触发原理,设计相机快门曝光与GNSS接收机模块的数据同步采集方式。采用MAVLink通讯协议传输拍摄命令,触发相机快门曝光的同时获取GNSS接收机的定位数据,最终完成图像数据与POS数据的同步获取。(3)通过组合差分定位算法实现动态飞行中较高精度的POS数据获取。采用u-blox公司的多星座接收机模块NEO-M8T构建PPK系统,将BDS/GPS组合定位算法与LAMBDA模糊度解算方法相结合,静态定位精度达到厘米级,动态定位精度达到分米级。最终构建了一套质量轻、低成本的PPK后差分系统,提高无人机的飞行轨迹记录精度。(4)研发了无人机影像数据智能管理系统。结合无人机数据采集与数据管理的需要,采用WEB技术和开源GIS空间信息技术,对无人机影像数据管理系统的整体架构和功能模块进行设计。数据管理系统基于B/S(浏览器/服务器)架构,系统前端采用Vue-cli框架进行组件式开发,使用Open Layers API实现地图数据的加载,开源Geo Server服务器和Postgre SQL数据库分别作为地理处理服务器和后台数据的存储库,最终实现对无人机影像数据的管理与操作、综合信息显示与交互以及数据共享等功能。通过两个实验区数据获取实验,结果表明,由机载平台、图像与坐标数据同步获取模块、BDS/GPS组合定位算法与LAMBDA模糊度解算方法、WEB技术和开源GIS空间信息技术所构建的无人机影像智能采集系统可以达到土地变更外业调查技术要求。利用该系统可以实现土地变更的图像及相应坐标信息的快速获取,并将无人机所获取的数据上传至数据管理系统,实现数据的科学化管理。
低成本小型无人机影像智能采集系统的设计与实现
这是一篇关于无人机,低成本,通讯协议,PPK,智能采集,管理系统的论文, 主要内容为随着科学技术的不断发展,无人机系统已经逐步融入社会发展的各个方面,成为不可或缺的民用设备与军事设备。无人机技术作为一种及时、有效地获取地物信息的技术手段,已然在国土资源、能源、商业、农业、警用、医疗和防灾减灾等领域有广泛的应用。目前,商业航测无人机由于购置和维护成本较高、维护周期长和系统封闭等原因,造成企业购置风险大、投入产出比高。因此本文基于Pixhawk开源飞行控制系统,研发一套定位精度较高且可以实现数据共享的低成本无人机影像智能采集系统,该系统可以满足国土调查中外业举证方面的需求。小型无人机测绘遥感系统由传感器、飞行平台、飞控系统、地面监控系统和遥控遥测链路构成。本文针对无人机采集与管理数据效率较低的问题,借助Micro Air Vehicle Link协议实现无人机与地面站之间的串口通讯,控制二者协同工作完成数据的采集。利用Pixhawk飞行控制系统控制信号设计完成图像采集模块,采用NEO-M8T低成本GNSS接收机构建差分测量系统,提高无人机的定位精度。最终将无人机获取的图像和坐标数据上传至数据管理系统,实现数据的智能化采集与管理,取得研究成果如下:(1)研发及搭建了无人机机载平台。针对无人机航空摄影图像的采集要求,首先确定了四旋翼无人机的主体设计参数及控制系统,选取相应硬件,实现无人机机载平台的搭建,确保系统的灵活性和稳定性。然后通过xcopter Calc评估软件和实际飞行对多旋翼无人机机载平台进行了测试,结果表明机载平台布局合理、稳定性较好。(2)设计并实现了航空摄影图像与GNSS接收机数据的同步采集。依据Pixhawk飞行控制系统控制信号格式和相机快门触发原理,设计相机快门曝光与GNSS接收机模块的数据同步采集方式。采用MAVLink通讯协议传输拍摄命令,触发相机快门曝光的同时获取GNSS接收机的定位数据,最终完成图像数据与POS数据的同步获取。(3)通过组合差分定位算法实现动态飞行中较高精度的POS数据获取。采用u-blox公司的多星座接收机模块NEO-M8T构建PPK系统,将BDS/GPS组合定位算法与LAMBDA模糊度解算方法相结合,静态定位精度达到厘米级,动态定位精度达到分米级。最终构建了一套质量轻、低成本的PPK后差分系统,提高无人机的飞行轨迹记录精度。(4)研发了无人机影像数据智能管理系统。结合无人机数据采集与数据管理的需要,采用WEB技术和开源GIS空间信息技术,对无人机影像数据管理系统的整体架构和功能模块进行设计。数据管理系统基于B/S(浏览器/服务器)架构,系统前端采用Vue-cli框架进行组件式开发,使用Open Layers API实现地图数据的加载,开源Geo Server服务器和Postgre SQL数据库分别作为地理处理服务器和后台数据的存储库,最终实现对无人机影像数据的管理与操作、综合信息显示与交互以及数据共享等功能。通过两个实验区数据获取实验,结果表明,由机载平台、图像与坐标数据同步获取模块、BDS/GPS组合定位算法与LAMBDA模糊度解算方法、WEB技术和开源GIS空间信息技术所构建的无人机影像智能采集系统可以达到土地变更外业调查技术要求。利用该系统可以实现土地变更的图像及相应坐标信息的快速获取,并将无人机所获取的数据上传至数据管理系统,实现数据的科学化管理。
低成本小型无人机影像智能采集系统的设计与实现
这是一篇关于无人机,低成本,通讯协议,PPK,智能采集,管理系统的论文, 主要内容为随着科学技术的不断发展,无人机系统已经逐步融入社会发展的各个方面,成为不可或缺的民用设备与军事设备。无人机技术作为一种及时、有效地获取地物信息的技术手段,已然在国土资源、能源、商业、农业、警用、医疗和防灾减灾等领域有广泛的应用。目前,商业航测无人机由于购置和维护成本较高、维护周期长和系统封闭等原因,造成企业购置风险大、投入产出比高。因此本文基于Pixhawk开源飞行控制系统,研发一套定位精度较高且可以实现数据共享的低成本无人机影像智能采集系统,该系统可以满足国土调查中外业举证方面的需求。小型无人机测绘遥感系统由传感器、飞行平台、飞控系统、地面监控系统和遥控遥测链路构成。本文针对无人机采集与管理数据效率较低的问题,借助Micro Air Vehicle Link协议实现无人机与地面站之间的串口通讯,控制二者协同工作完成数据的采集。利用Pixhawk飞行控制系统控制信号设计完成图像采集模块,采用NEO-M8T低成本GNSS接收机构建差分测量系统,提高无人机的定位精度。最终将无人机获取的图像和坐标数据上传至数据管理系统,实现数据的智能化采集与管理,取得研究成果如下:(1)研发及搭建了无人机机载平台。针对无人机航空摄影图像的采集要求,首先确定了四旋翼无人机的主体设计参数及控制系统,选取相应硬件,实现无人机机载平台的搭建,确保系统的灵活性和稳定性。然后通过xcopter Calc评估软件和实际飞行对多旋翼无人机机载平台进行了测试,结果表明机载平台布局合理、稳定性较好。(2)设计并实现了航空摄影图像与GNSS接收机数据的同步采集。依据Pixhawk飞行控制系统控制信号格式和相机快门触发原理,设计相机快门曝光与GNSS接收机模块的数据同步采集方式。采用MAVLink通讯协议传输拍摄命令,触发相机快门曝光的同时获取GNSS接收机的定位数据,最终完成图像数据与POS数据的同步获取。(3)通过组合差分定位算法实现动态飞行中较高精度的POS数据获取。采用u-blox公司的多星座接收机模块NEO-M8T构建PPK系统,将BDS/GPS组合定位算法与LAMBDA模糊度解算方法相结合,静态定位精度达到厘米级,动态定位精度达到分米级。最终构建了一套质量轻、低成本的PPK后差分系统,提高无人机的飞行轨迹记录精度。(4)研发了无人机影像数据智能管理系统。结合无人机数据采集与数据管理的需要,采用WEB技术和开源GIS空间信息技术,对无人机影像数据管理系统的整体架构和功能模块进行设计。数据管理系统基于B/S(浏览器/服务器)架构,系统前端采用Vue-cli框架进行组件式开发,使用Open Layers API实现地图数据的加载,开源Geo Server服务器和Postgre SQL数据库分别作为地理处理服务器和后台数据的存储库,最终实现对无人机影像数据的管理与操作、综合信息显示与交互以及数据共享等功能。通过两个实验区数据获取实验,结果表明,由机载平台、图像与坐标数据同步获取模块、BDS/GPS组合定位算法与LAMBDA模糊度解算方法、WEB技术和开源GIS空间信息技术所构建的无人机影像智能采集系统可以达到土地变更外业调查技术要求。利用该系统可以实现土地变更的图像及相应坐标信息的快速获取,并将无人机所获取的数据上传至数据管理系统,实现数据的科学化管理。
低成本小型无人机影像智能采集系统的设计与实现
这是一篇关于无人机,低成本,通讯协议,PPK,智能采集,管理系统的论文, 主要内容为随着科学技术的不断发展,无人机系统已经逐步融入社会发展的各个方面,成为不可或缺的民用设备与军事设备。无人机技术作为一种及时、有效地获取地物信息的技术手段,已然在国土资源、能源、商业、农业、警用、医疗和防灾减灾等领域有广泛的应用。目前,商业航测无人机由于购置和维护成本较高、维护周期长和系统封闭等原因,造成企业购置风险大、投入产出比高。因此本文基于Pixhawk开源飞行控制系统,研发一套定位精度较高且可以实现数据共享的低成本无人机影像智能采集系统,该系统可以满足国土调查中外业举证方面的需求。小型无人机测绘遥感系统由传感器、飞行平台、飞控系统、地面监控系统和遥控遥测链路构成。本文针对无人机采集与管理数据效率较低的问题,借助Micro Air Vehicle Link协议实现无人机与地面站之间的串口通讯,控制二者协同工作完成数据的采集。利用Pixhawk飞行控制系统控制信号设计完成图像采集模块,采用NEO-M8T低成本GNSS接收机构建差分测量系统,提高无人机的定位精度。最终将无人机获取的图像和坐标数据上传至数据管理系统,实现数据的智能化采集与管理,取得研究成果如下:(1)研发及搭建了无人机机载平台。针对无人机航空摄影图像的采集要求,首先确定了四旋翼无人机的主体设计参数及控制系统,选取相应硬件,实现无人机机载平台的搭建,确保系统的灵活性和稳定性。然后通过xcopter Calc评估软件和实际飞行对多旋翼无人机机载平台进行了测试,结果表明机载平台布局合理、稳定性较好。(2)设计并实现了航空摄影图像与GNSS接收机数据的同步采集。依据Pixhawk飞行控制系统控制信号格式和相机快门触发原理,设计相机快门曝光与GNSS接收机模块的数据同步采集方式。采用MAVLink通讯协议传输拍摄命令,触发相机快门曝光的同时获取GNSS接收机的定位数据,最终完成图像数据与POS数据的同步获取。(3)通过组合差分定位算法实现动态飞行中较高精度的POS数据获取。采用u-blox公司的多星座接收机模块NEO-M8T构建PPK系统,将BDS/GPS组合定位算法与LAMBDA模糊度解算方法相结合,静态定位精度达到厘米级,动态定位精度达到分米级。最终构建了一套质量轻、低成本的PPK后差分系统,提高无人机的飞行轨迹记录精度。(4)研发了无人机影像数据智能管理系统。结合无人机数据采集与数据管理的需要,采用WEB技术和开源GIS空间信息技术,对无人机影像数据管理系统的整体架构和功能模块进行设计。数据管理系统基于B/S(浏览器/服务器)架构,系统前端采用Vue-cli框架进行组件式开发,使用Open Layers API实现地图数据的加载,开源Geo Server服务器和Postgre SQL数据库分别作为地理处理服务器和后台数据的存储库,最终实现对无人机影像数据的管理与操作、综合信息显示与交互以及数据共享等功能。通过两个实验区数据获取实验,结果表明,由机载平台、图像与坐标数据同步获取模块、BDS/GPS组合定位算法与LAMBDA模糊度解算方法、WEB技术和开源GIS空间信息技术所构建的无人机影像智能采集系统可以达到土地变更外业调查技术要求。利用该系统可以实现土地变更的图像及相应坐标信息的快速获取,并将无人机所获取的数据上传至数据管理系统,实现数据的科学化管理。
低成本小型无人机影像智能采集系统的设计与实现
这是一篇关于无人机,低成本,通讯协议,PPK,智能采集,管理系统的论文, 主要内容为随着科学技术的不断发展,无人机系统已经逐步融入社会发展的各个方面,成为不可或缺的民用设备与军事设备。无人机技术作为一种及时、有效地获取地物信息的技术手段,已然在国土资源、能源、商业、农业、警用、医疗和防灾减灾等领域有广泛的应用。目前,商业航测无人机由于购置和维护成本较高、维护周期长和系统封闭等原因,造成企业购置风险大、投入产出比高。因此本文基于Pixhawk开源飞行控制系统,研发一套定位精度较高且可以实现数据共享的低成本无人机影像智能采集系统,该系统可以满足国土调查中外业举证方面的需求。小型无人机测绘遥感系统由传感器、飞行平台、飞控系统、地面监控系统和遥控遥测链路构成。本文针对无人机采集与管理数据效率较低的问题,借助Micro Air Vehicle Link协议实现无人机与地面站之间的串口通讯,控制二者协同工作完成数据的采集。利用Pixhawk飞行控制系统控制信号设计完成图像采集模块,采用NEO-M8T低成本GNSS接收机构建差分测量系统,提高无人机的定位精度。最终将无人机获取的图像和坐标数据上传至数据管理系统,实现数据的智能化采集与管理,取得研究成果如下:(1)研发及搭建了无人机机载平台。针对无人机航空摄影图像的采集要求,首先确定了四旋翼无人机的主体设计参数及控制系统,选取相应硬件,实现无人机机载平台的搭建,确保系统的灵活性和稳定性。然后通过xcopter Calc评估软件和实际飞行对多旋翼无人机机载平台进行了测试,结果表明机载平台布局合理、稳定性较好。(2)设计并实现了航空摄影图像与GNSS接收机数据的同步采集。依据Pixhawk飞行控制系统控制信号格式和相机快门触发原理,设计相机快门曝光与GNSS接收机模块的数据同步采集方式。采用MAVLink通讯协议传输拍摄命令,触发相机快门曝光的同时获取GNSS接收机的定位数据,最终完成图像数据与POS数据的同步获取。(3)通过组合差分定位算法实现动态飞行中较高精度的POS数据获取。采用u-blox公司的多星座接收机模块NEO-M8T构建PPK系统,将BDS/GPS组合定位算法与LAMBDA模糊度解算方法相结合,静态定位精度达到厘米级,动态定位精度达到分米级。最终构建了一套质量轻、低成本的PPK后差分系统,提高无人机的飞行轨迹记录精度。(4)研发了无人机影像数据智能管理系统。结合无人机数据采集与数据管理的需要,采用WEB技术和开源GIS空间信息技术,对无人机影像数据管理系统的整体架构和功能模块进行设计。数据管理系统基于B/S(浏览器/服务器)架构,系统前端采用Vue-cli框架进行组件式开发,使用Open Layers API实现地图数据的加载,开源Geo Server服务器和Postgre SQL数据库分别作为地理处理服务器和后台数据的存储库,最终实现对无人机影像数据的管理与操作、综合信息显示与交互以及数据共享等功能。通过两个实验区数据获取实验,结果表明,由机载平台、图像与坐标数据同步获取模块、BDS/GPS组合定位算法与LAMBDA模糊度解算方法、WEB技术和开源GIS空间信息技术所构建的无人机影像智能采集系统可以达到土地变更外业调查技术要求。利用该系统可以实现土地变更的图像及相应坐标信息的快速获取,并将无人机所获取的数据上传至数据管理系统,实现数据的科学化管理。
等离子体合成及改性氮掺杂碳纳米管基电催化材料在直接甲醇燃料电池中的应用研究
这是一篇关于直流等离子体磁控溅射,等离子体增强化学气相沉积,低成本,富缺陷,直接甲醇燃料电池的论文, 主要内容为近年来,随着社会进步和人类对能源需求的日益增长,直接甲醇燃料电池(DMFC)作为一种将化学能直接转换为电能的发电装置应运而生,凭借其燃料来源丰富、价格低廉、能量转换效率高和无污染等优点引起了科学家们的广泛关注。开发新型、高效和结构稳定的氧还原反应(ORR)与甲醇氧化反应(MOR)催化剂是关键但极具挑战性。目前,商业Pt基催化剂成本较高,稳定性较差和催化反应动力学进程较慢,制约了其实际应用。新型高效电极的研究和制备是DMFC技术发展的重要组成部分。等离子体技术操作简单、效率高、绿色环保和成本低而被广泛应用于材料的合成与改性中。为了实现DMFC催化剂的高Pt基利用率、高活性和稳定性,本论文采用直流等离子体磁控溅射(DC-PMS)技术和等离子体增强化学气相沉积(PECVD)技术,开发了两种新型柔性的DMFC一体化电极制备的新方法。本论文的主要研究内容及取得的研究成果如下:(1)利用DC-PMS技术在氩气氛围下成功地将铂(Pt)致密均匀地沉积到包覆CoFe合金的氮掺杂碳纳米管上(Pt-CoFe@NCNT/CFC)。该催化剂表现出超高的ORR、MOR和氢析出(HER)性能,并优于商用Pt/C催化剂。电感耦合等离子体发射光谱(ICP-OES)显示沉积在碳纳米管的Pt纳米颗粒(NPs)的含量为2.32 wt.%,表明采用DC-PMS技术在贵金属沉积过程中,可以有效地降低Pt的实际负载量,同时提高其分散性,达到低成本高活性的目的。此外,通过实验观察发现,Pt多以Pt0的形式存在,增强了催化剂对目标反应的催化活性。并且,DC-PMS技术为单原子沉积,保持了载体的高导电性结构。本研究为采用DC-PMS技术在催化剂表面负载贵金属,改善其性能,明显降低其成本打开新途径。(2)将Ru靶片粘贴在Pt靶的表面,利用DC-PMS技术将RuPt合金NPs沉积于CoFe@NCNT/CFC表面,采用等离子体增强化学气相沉积(PECVD)技术放电处理制备了富含缺陷、低RuPt合金NPs含量的包覆CoFe合金的氮掺杂碳纳米管基催化剂(P-RuPt-CoFe@NCNT/CFC),表现出卓越的MOR性能和抗CO中毒性。ICP-OES显示,碳纳米管上沉积Ru NPs和Pt NPs的含量分别为0.11wt.%和0.73 wt.%,表明具有较低的贵金属的负载量。拉曼光谱(Raman)显示PECVD等离子体处理后的P-RuPt-CoFe@NCNT/CFC的ID/IG值为0.971,明显高于未经处理的RuPt-CoFe@NCNT/CFC(ID/IG=0.890),说明在Ar/NH3气氛中PECVD等离子体放电处理不仅提高了零价贵金属的含量,而且能够增强NCNTs的缺陷,增加活性位点,大大提高催化剂的催化活性。该工作为开发富缺陷、低成本贵金属合金催化剂提供了有价值的启示。综上所述,本论文旨在通过催化剂的设计来改善ORR/MOR的电催化性能。以DC-PMS技术为手段,使贵金属低含量、高密度且均匀分布于基底表面,达到电催化剂低成本、高活性的目的。采用PECVD等离子体技术,实现了催化剂表面电子和化学结构的微观设计和调节,制造缺陷,使电化学活性位点暴露更加丰富。本论文是一项新型、高效和低成本的研究,为设计与研制高稳定的催化剂提供基础数据与理论参考,促进了等离子体技术在材料合成和表面改性等方面具有更加广泛的应用前景。
本文内容包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主题。发布者:毕设货栈 ,原文地址:https://m.bishedaima.com/lunwen/52728.html