7个研究背景和意义示例,教你写计算机快速检测论文

今天分享的是关于快速检测的7篇计算机毕业论文范文, 如果你的论文涉及到快速检测等主题,本文能够帮助到你 土壤重金属遥测仪无人载台地面测试系统设计与实现 这是一篇关于激光诱导击穿光谱

今天分享的是关于快速检测的7篇计算机毕业论文范文, 如果你的论文涉及到快速检测等主题,本文能够帮助到你

土壤重金属遥测仪无人载台地面测试系统设计与实现

这是一篇关于激光诱导击穿光谱,土壤重金属污染,快速检测,无人载台,嵌入式的论文, 主要内容为土壤是人类生产和生活最重要的资源,随着我国工业化进程的持续推进,土壤中的重金属元素超标以及土壤重金属污染问题也日趋严峻。土壤中的重金属含量过高,不仅对农业有很大的危害,对人体也有很大的影响。激光诱导击穿光谱技术(Laser Induced Breakdown Spectroscopy,LIBS)以其快速、可实现多组分同时检测等优势,在生物医学、军事安全、太空探测、工业过程控制、环境污染监测等方面获得了广泛应用。针对现有耕地土壤重金属污染物检测手段无法满足大面积快速检测、多种重金属元素同时联测,以及长期跟踪检测需求等问题,基于LIBS技术与嵌入式技术,结合实验室条件下无人载台进行无人载台控制及土壤重金属元素检测,从快速实时稳定检测分析的角度出发,具体开展了如下工作:(1)在实验室搭建LIBS检测系统,优化检测条件,获取含重金属的土壤光谱图,并对其进行数据分析。基于上述LIBS检测系统,搭载基于无人载台的LIBS检测系统,实现了实验室条件下数据采集到无人载台条件下测试系统数据采集的转换,制备土壤样品,对样品中重金属元素Cr进行光谱采集与数据分析。(2)设计了基于无人载台的LIBS自聚焦检测控制电子学系统。本研究以嵌入式微机为主要控制平台,以固体激光器、微型光纤光谱仪和嵌入式计算机仪器组成核心部件,完成高能量激光产生、光谱采集、光谱处理和分析等多项功能。将GPS定位模块、降压模块等作为环境或样本数据收集模块,与自主开发的电路模块相集成,实现对样本数据的收集。使用Altium Designer 20软件进行系统硬件电路图设计和PCB板设计。在此基础上,将LIBS自聚焦检测装置组装并与导轨滑块进行机械连接,利用电机控制驱动滑块,模拟无人机飞行环境,对电路性能进行测试验证,最终搭建基于无人载台的LIBS自聚焦检测硬件系统,实现了在无人载台模拟实验室环境下的高稳定性无人载台数据采集,完成了该电子学系统的联机测试。(3)开发了基于无人载台的LIBS自聚焦检测系统控制软件。以Linux操作系统为平台,使用Qt开发框架,并利用C++语言,开发了一款具有硬件设备控制功能和光谱数据采集功能的软件。为了实现上述功能,在Ubuntu和树莓派上分别搭建软件开发环境,并完成了主机从机的交互编译,最终成功实现了该软件的功能。在Qt中,通过对激光串行接口编程、对光谱仪的动态库的调用,可以完成对激光的控制、光谱仪的数据采集等功能。该软件操作简单、界面简洁,可有效控制无人载台启停及转速,可实现基于无人载台的光谱数据采集。该系统具有良好的工作性能,可实现土壤中重金属元素的快速原位检测,将地面无人载台测试系统采集数据与实验台测试数据进行对比,验证了该系统的稳定性与可靠性。本土壤重金属遥测仪无人载台地面测试系统通过数据采集和光谱对比验证了其稳定性和可靠性,为未来将LIBS系统架构在无人机上开展耕地土壤重金属远程遥测提供了基础。

基于表面增强拉曼光谱技术的柑橘中噻菌灵残留快速检测方法研究及系统开发

这是一篇关于柑橘,噻菌灵,表面增强拉曼光谱,快速检测,便携式检测装置,Web云平台的论文, 主要内容为柑橘营养丰富、味美可口,是我国种植面积广、消费需求高的经济作物之一。噻菌灵(TBZ)作为苯并咪唑类农药,广泛应用于柑橘的真菌病害防治,保障了柑橘产量和品质。但是,TBZ的使用也带来了柑橘中农药残留问题,引起了国家和社会的重视。现有的农药残留检测方法和系统存在检测时间长、仪器设备昂贵、无法现场化检测等不足。因此,本研究以表面增强拉曼光谱(SERS)技术为基础,结合化学计量学手段,构建了柑橘中TBZ残留快速、灵敏和稳定的定量检测方法,并基于该方法进一步开展了柑橘中TBZ残留的快速现场化检测系统的研发。主要研究内容如下:1、柑橘中噻菌灵残留的快速免标记SERS检测方法研究。针对传统检测方法时间长、操作复杂、需生物标记等问题,开展了金属纳米SERS基底结合化学计量学的柑橘中TBZ残留快速免标记SERS检测方法研究。首先,通过种子生长法制备了金纳米棒(Au NRs)作为拉曼增强基底。将制备的Au NRs与不同TBZ浓度的柑橘提取物混合,并采集其SERS光谱。然后,对原始光谱进行基线校正和光谱预处理以降低原始光谱的基线漂移和干扰。紧接着,使用不同的变量筛选算法结合偏最小二乘法(PLS)分别构建柑橘中TBZ残留的定量检测模型。最后,对所构建的定量检测模型的检测性能进行评价。结果发现,使用遗传算法(GA)进行变量筛选,并且结合PLS建立的定量检测模型效果最佳。GA-PLS模型的校正集决定系数和均方根误差为Rc2=0.9834、RMSEC=0.0929,预测集决定系数和均方根误差为Rp2=0.9737,RMSEP=0.1179,相对分析误差RPD=5.85。将所构建的方法与HPLC方法进行t检验,发现两种方法的检测结果无显著性差异(P>0.05)。研究表明,所构建的化学计量学结合SERS技术的检测方法可以实现柑橘中TBZ残留快速准确定量检测,为后续现场检测应用提供了基础。2、噻菌灵残留的便携式SERS检测系统开发。针对目前SERS检测装置携带不便、现场化检测困难、操作软件功能不足等情况,在柑橘中TBZ残留的SERS检测方法基础上,开发了基于Android平台的便携式SERS检测系统。检测系统由硬件系统和软件系统两个部分组成。硬件包括半导体激光发射器、拉曼探头、微型拉曼光谱仪、控制电路、蓝牙串口模块、安卓手机。软件是基于Java语言开发的Android应用程序,主要功能模块包括:蓝牙通信、光谱采集和预测、数据存储。所构建的便携式检测装置体积小巧,软硬件之间的蓝牙通信正常。对系统采集光谱的稳定性进行分析,采集三次0.5μg/m L TBZ的柑橘样本,结果显示其SERS光谱基本一致。研究表明,所开发的便携式SERS光谱检测系统能够运用于柑橘中TBZ残留的现场检测,操作简单且具有良好的稳定性。3、噻菌灵残留的SERS检测Web云平台搭建。针对便携式SERS检测系统光谱数据共享水平不高、模型维护困难等问题,采用浏览器/服务器(Browser/Server,B/S)模式搭建了柑橘中TBZ残留的SERS检测Web云平台,对现场终端设备进行平台化管理。首先,基于vue.js、Element UI、Echarts等设计了Web云平台的交互管理网页。Web云平台可以通过浏览器被访问,从而查看检测数据并上传或修改检测模型。然后,使用Spring boot、Tomact、My Batis等实现了检测数据的处理和存储。最后,通过IP地址和端口号,实现了便携式SERS检测装置与Web云平台的无线网络连接,从而构建了一套信息共享度高和模型维护方便的柑橘中TBZ残留SERS检测系统。在此基础上,使用10个独立的柑橘加标样本对检测系统的性能进行实际验证。结果发现,Web云平台结合便携式终端装置的SERS检测系统能够实现柑橘中TBZ残留快速精确定量检测,所构建系统的3次平行预测值最大变异系数为4.96%<5%;同时与HPLC检测结果进行比较,平均相对误差为2.52%,且两者无显著性差异。研究表明,所构建的SERS检测Web云平台为模型共享和光谱数据管理提供了基础,降低了模型修改和维护的难度,提高了柑橘中TBZ残留SERS检测系统的信息化水平。

基于表面增强拉曼光谱技术的柑橘中噻菌灵残留快速检测方法研究及系统开发

这是一篇关于柑橘,噻菌灵,表面增强拉曼光谱,快速检测,便携式检测装置,Web云平台的论文, 主要内容为柑橘营养丰富、味美可口,是我国种植面积广、消费需求高的经济作物之一。噻菌灵(TBZ)作为苯并咪唑类农药,广泛应用于柑橘的真菌病害防治,保障了柑橘产量和品质。但是,TBZ的使用也带来了柑橘中农药残留问题,引起了国家和社会的重视。现有的农药残留检测方法和系统存在检测时间长、仪器设备昂贵、无法现场化检测等不足。因此,本研究以表面增强拉曼光谱(SERS)技术为基础,结合化学计量学手段,构建了柑橘中TBZ残留快速、灵敏和稳定的定量检测方法,并基于该方法进一步开展了柑橘中TBZ残留的快速现场化检测系统的研发。主要研究内容如下:1、柑橘中噻菌灵残留的快速免标记SERS检测方法研究。针对传统检测方法时间长、操作复杂、需生物标记等问题,开展了金属纳米SERS基底结合化学计量学的柑橘中TBZ残留快速免标记SERS检测方法研究。首先,通过种子生长法制备了金纳米棒(Au NRs)作为拉曼增强基底。将制备的Au NRs与不同TBZ浓度的柑橘提取物混合,并采集其SERS光谱。然后,对原始光谱进行基线校正和光谱预处理以降低原始光谱的基线漂移和干扰。紧接着,使用不同的变量筛选算法结合偏最小二乘法(PLS)分别构建柑橘中TBZ残留的定量检测模型。最后,对所构建的定量检测模型的检测性能进行评价。结果发现,使用遗传算法(GA)进行变量筛选,并且结合PLS建立的定量检测模型效果最佳。GA-PLS模型的校正集决定系数和均方根误差为Rc2=0.9834、RMSEC=0.0929,预测集决定系数和均方根误差为Rp2=0.9737,RMSEP=0.1179,相对分析误差RPD=5.85。将所构建的方法与HPLC方法进行t检验,发现两种方法的检测结果无显著性差异(P>0.05)。研究表明,所构建的化学计量学结合SERS技术的检测方法可以实现柑橘中TBZ残留快速准确定量检测,为后续现场检测应用提供了基础。2、噻菌灵残留的便携式SERS检测系统开发。针对目前SERS检测装置携带不便、现场化检测困难、操作软件功能不足等情况,在柑橘中TBZ残留的SERS检测方法基础上,开发了基于Android平台的便携式SERS检测系统。检测系统由硬件系统和软件系统两个部分组成。硬件包括半导体激光发射器、拉曼探头、微型拉曼光谱仪、控制电路、蓝牙串口模块、安卓手机。软件是基于Java语言开发的Android应用程序,主要功能模块包括:蓝牙通信、光谱采集和预测、数据存储。所构建的便携式检测装置体积小巧,软硬件之间的蓝牙通信正常。对系统采集光谱的稳定性进行分析,采集三次0.5μg/m L TBZ的柑橘样本,结果显示其SERS光谱基本一致。研究表明,所开发的便携式SERS光谱检测系统能够运用于柑橘中TBZ残留的现场检测,操作简单且具有良好的稳定性。3、噻菌灵残留的SERS检测Web云平台搭建。针对便携式SERS检测系统光谱数据共享水平不高、模型维护困难等问题,采用浏览器/服务器(Browser/Server,B/S)模式搭建了柑橘中TBZ残留的SERS检测Web云平台,对现场终端设备进行平台化管理。首先,基于vue.js、Element UI、Echarts等设计了Web云平台的交互管理网页。Web云平台可以通过浏览器被访问,从而查看检测数据并上传或修改检测模型。然后,使用Spring boot、Tomact、My Batis等实现了检测数据的处理和存储。最后,通过IP地址和端口号,实现了便携式SERS检测装置与Web云平台的无线网络连接,从而构建了一套信息共享度高和模型维护方便的柑橘中TBZ残留SERS检测系统。在此基础上,使用10个独立的柑橘加标样本对检测系统的性能进行实际验证。结果发现,Web云平台结合便携式终端装置的SERS检测系统能够实现柑橘中TBZ残留快速精确定量检测,所构建系统的3次平行预测值最大变异系数为4.96%<5%;同时与HPLC检测结果进行比较,平均相对误差为2.52%,且两者无显著性差异。研究表明,所构建的SERS检测Web云平台为模型共享和光谱数据管理提供了基础,降低了模型修改和维护的难度,提高了柑橘中TBZ残留SERS检测系统的信息化水平。

土壤重金属遥测仪无人载台地面测试系统设计与实现

这是一篇关于激光诱导击穿光谱,土壤重金属污染,快速检测,无人载台,嵌入式的论文, 主要内容为土壤是人类生产和生活最重要的资源,随着我国工业化进程的持续推进,土壤中的重金属元素超标以及土壤重金属污染问题也日趋严峻。土壤中的重金属含量过高,不仅对农业有很大的危害,对人体也有很大的影响。激光诱导击穿光谱技术(Laser Induced Breakdown Spectroscopy,LIBS)以其快速、可实现多组分同时检测等优势,在生物医学、军事安全、太空探测、工业过程控制、环境污染监测等方面获得了广泛应用。针对现有耕地土壤重金属污染物检测手段无法满足大面积快速检测、多种重金属元素同时联测,以及长期跟踪检测需求等问题,基于LIBS技术与嵌入式技术,结合实验室条件下无人载台进行无人载台控制及土壤重金属元素检测,从快速实时稳定检测分析的角度出发,具体开展了如下工作:(1)在实验室搭建LIBS检测系统,优化检测条件,获取含重金属的土壤光谱图,并对其进行数据分析。基于上述LIBS检测系统,搭载基于无人载台的LIBS检测系统,实现了实验室条件下数据采集到无人载台条件下测试系统数据采集的转换,制备土壤样品,对样品中重金属元素Cr进行光谱采集与数据分析。(2)设计了基于无人载台的LIBS自聚焦检测控制电子学系统。本研究以嵌入式微机为主要控制平台,以固体激光器、微型光纤光谱仪和嵌入式计算机仪器组成核心部件,完成高能量激光产生、光谱采集、光谱处理和分析等多项功能。将GPS定位模块、降压模块等作为环境或样本数据收集模块,与自主开发的电路模块相集成,实现对样本数据的收集。使用Altium Designer 20软件进行系统硬件电路图设计和PCB板设计。在此基础上,将LIBS自聚焦检测装置组装并与导轨滑块进行机械连接,利用电机控制驱动滑块,模拟无人机飞行环境,对电路性能进行测试验证,最终搭建基于无人载台的LIBS自聚焦检测硬件系统,实现了在无人载台模拟实验室环境下的高稳定性无人载台数据采集,完成了该电子学系统的联机测试。(3)开发了基于无人载台的LIBS自聚焦检测系统控制软件。以Linux操作系统为平台,使用Qt开发框架,并利用C++语言,开发了一款具有硬件设备控制功能和光谱数据采集功能的软件。为了实现上述功能,在Ubuntu和树莓派上分别搭建软件开发环境,并完成了主机从机的交互编译,最终成功实现了该软件的功能。在Qt中,通过对激光串行接口编程、对光谱仪的动态库的调用,可以完成对激光的控制、光谱仪的数据采集等功能。该软件操作简单、界面简洁,可有效控制无人载台启停及转速,可实现基于无人载台的光谱数据采集。该系统具有良好的工作性能,可实现土壤中重金属元素的快速原位检测,将地面无人载台测试系统采集数据与实验台测试数据进行对比,验证了该系统的稳定性与可靠性。本土壤重金属遥测仪无人载台地面测试系统通过数据采集和光谱对比验证了其稳定性和可靠性,为未来将LIBS系统架构在无人机上开展耕地土壤重金属远程遥测提供了基础。

基于表面增强拉曼光谱技术的柑橘中噻菌灵残留快速检测方法研究及系统开发

这是一篇关于柑橘,噻菌灵,表面增强拉曼光谱,快速检测,便携式检测装置,Web云平台的论文, 主要内容为柑橘营养丰富、味美可口,是我国种植面积广、消费需求高的经济作物之一。噻菌灵(TBZ)作为苯并咪唑类农药,广泛应用于柑橘的真菌病害防治,保障了柑橘产量和品质。但是,TBZ的使用也带来了柑橘中农药残留问题,引起了国家和社会的重视。现有的农药残留检测方法和系统存在检测时间长、仪器设备昂贵、无法现场化检测等不足。因此,本研究以表面增强拉曼光谱(SERS)技术为基础,结合化学计量学手段,构建了柑橘中TBZ残留快速、灵敏和稳定的定量检测方法,并基于该方法进一步开展了柑橘中TBZ残留的快速现场化检测系统的研发。主要研究内容如下:1、柑橘中噻菌灵残留的快速免标记SERS检测方法研究。针对传统检测方法时间长、操作复杂、需生物标记等问题,开展了金属纳米SERS基底结合化学计量学的柑橘中TBZ残留快速免标记SERS检测方法研究。首先,通过种子生长法制备了金纳米棒(Au NRs)作为拉曼增强基底。将制备的Au NRs与不同TBZ浓度的柑橘提取物混合,并采集其SERS光谱。然后,对原始光谱进行基线校正和光谱预处理以降低原始光谱的基线漂移和干扰。紧接着,使用不同的变量筛选算法结合偏最小二乘法(PLS)分别构建柑橘中TBZ残留的定量检测模型。最后,对所构建的定量检测模型的检测性能进行评价。结果发现,使用遗传算法(GA)进行变量筛选,并且结合PLS建立的定量检测模型效果最佳。GA-PLS模型的校正集决定系数和均方根误差为Rc2=0.9834、RMSEC=0.0929,预测集决定系数和均方根误差为Rp2=0.9737,RMSEP=0.1179,相对分析误差RPD=5.85。将所构建的方法与HPLC方法进行t检验,发现两种方法的检测结果无显著性差异(P>0.05)。研究表明,所构建的化学计量学结合SERS技术的检测方法可以实现柑橘中TBZ残留快速准确定量检测,为后续现场检测应用提供了基础。2、噻菌灵残留的便携式SERS检测系统开发。针对目前SERS检测装置携带不便、现场化检测困难、操作软件功能不足等情况,在柑橘中TBZ残留的SERS检测方法基础上,开发了基于Android平台的便携式SERS检测系统。检测系统由硬件系统和软件系统两个部分组成。硬件包括半导体激光发射器、拉曼探头、微型拉曼光谱仪、控制电路、蓝牙串口模块、安卓手机。软件是基于Java语言开发的Android应用程序,主要功能模块包括:蓝牙通信、光谱采集和预测、数据存储。所构建的便携式检测装置体积小巧,软硬件之间的蓝牙通信正常。对系统采集光谱的稳定性进行分析,采集三次0.5μg/m L TBZ的柑橘样本,结果显示其SERS光谱基本一致。研究表明,所开发的便携式SERS光谱检测系统能够运用于柑橘中TBZ残留的现场检测,操作简单且具有良好的稳定性。3、噻菌灵残留的SERS检测Web云平台搭建。针对便携式SERS检测系统光谱数据共享水平不高、模型维护困难等问题,采用浏览器/服务器(Browser/Server,B/S)模式搭建了柑橘中TBZ残留的SERS检测Web云平台,对现场终端设备进行平台化管理。首先,基于vue.js、Element UI、Echarts等设计了Web云平台的交互管理网页。Web云平台可以通过浏览器被访问,从而查看检测数据并上传或修改检测模型。然后,使用Spring boot、Tomact、My Batis等实现了检测数据的处理和存储。最后,通过IP地址和端口号,实现了便携式SERS检测装置与Web云平台的无线网络连接,从而构建了一套信息共享度高和模型维护方便的柑橘中TBZ残留SERS检测系统。在此基础上,使用10个独立的柑橘加标样本对检测系统的性能进行实际验证。结果发现,Web云平台结合便携式终端装置的SERS检测系统能够实现柑橘中TBZ残留快速精确定量检测,所构建系统的3次平行预测值最大变异系数为4.96%<5%;同时与HPLC检测结果进行比较,平均相对误差为2.52%,且两者无显著性差异。研究表明,所构建的SERS检测Web云平台为模型共享和光谱数据管理提供了基础,降低了模型修改和维护的难度,提高了柑橘中TBZ残留SERS检测系统的信息化水平。

基于表面增强拉曼光谱技术的柑橘中噻菌灵残留快速检测方法研究及系统开发

这是一篇关于柑橘,噻菌灵,表面增强拉曼光谱,快速检测,便携式检测装置,Web云平台的论文, 主要内容为柑橘营养丰富、味美可口,是我国种植面积广、消费需求高的经济作物之一。噻菌灵(TBZ)作为苯并咪唑类农药,广泛应用于柑橘的真菌病害防治,保障了柑橘产量和品质。但是,TBZ的使用也带来了柑橘中农药残留问题,引起了国家和社会的重视。现有的农药残留检测方法和系统存在检测时间长、仪器设备昂贵、无法现场化检测等不足。因此,本研究以表面增强拉曼光谱(SERS)技术为基础,结合化学计量学手段,构建了柑橘中TBZ残留快速、灵敏和稳定的定量检测方法,并基于该方法进一步开展了柑橘中TBZ残留的快速现场化检测系统的研发。主要研究内容如下:1、柑橘中噻菌灵残留的快速免标记SERS检测方法研究。针对传统检测方法时间长、操作复杂、需生物标记等问题,开展了金属纳米SERS基底结合化学计量学的柑橘中TBZ残留快速免标记SERS检测方法研究。首先,通过种子生长法制备了金纳米棒(Au NRs)作为拉曼增强基底。将制备的Au NRs与不同TBZ浓度的柑橘提取物混合,并采集其SERS光谱。然后,对原始光谱进行基线校正和光谱预处理以降低原始光谱的基线漂移和干扰。紧接着,使用不同的变量筛选算法结合偏最小二乘法(PLS)分别构建柑橘中TBZ残留的定量检测模型。最后,对所构建的定量检测模型的检测性能进行评价。结果发现,使用遗传算法(GA)进行变量筛选,并且结合PLS建立的定量检测模型效果最佳。GA-PLS模型的校正集决定系数和均方根误差为Rc2=0.9834、RMSEC=0.0929,预测集决定系数和均方根误差为Rp2=0.9737,RMSEP=0.1179,相对分析误差RPD=5.85。将所构建的方法与HPLC方法进行t检验,发现两种方法的检测结果无显著性差异(P>0.05)。研究表明,所构建的化学计量学结合SERS技术的检测方法可以实现柑橘中TBZ残留快速准确定量检测,为后续现场检测应用提供了基础。2、噻菌灵残留的便携式SERS检测系统开发。针对目前SERS检测装置携带不便、现场化检测困难、操作软件功能不足等情况,在柑橘中TBZ残留的SERS检测方法基础上,开发了基于Android平台的便携式SERS检测系统。检测系统由硬件系统和软件系统两个部分组成。硬件包括半导体激光发射器、拉曼探头、微型拉曼光谱仪、控制电路、蓝牙串口模块、安卓手机。软件是基于Java语言开发的Android应用程序,主要功能模块包括:蓝牙通信、光谱采集和预测、数据存储。所构建的便携式检测装置体积小巧,软硬件之间的蓝牙通信正常。对系统采集光谱的稳定性进行分析,采集三次0.5μg/m L TBZ的柑橘样本,结果显示其SERS光谱基本一致。研究表明,所开发的便携式SERS光谱检测系统能够运用于柑橘中TBZ残留的现场检测,操作简单且具有良好的稳定性。3、噻菌灵残留的SERS检测Web云平台搭建。针对便携式SERS检测系统光谱数据共享水平不高、模型维护困难等问题,采用浏览器/服务器(Browser/Server,B/S)模式搭建了柑橘中TBZ残留的SERS检测Web云平台,对现场终端设备进行平台化管理。首先,基于vue.js、Element UI、Echarts等设计了Web云平台的交互管理网页。Web云平台可以通过浏览器被访问,从而查看检测数据并上传或修改检测模型。然后,使用Spring boot、Tomact、My Batis等实现了检测数据的处理和存储。最后,通过IP地址和端口号,实现了便携式SERS检测装置与Web云平台的无线网络连接,从而构建了一套信息共享度高和模型维护方便的柑橘中TBZ残留SERS检测系统。在此基础上,使用10个独立的柑橘加标样本对检测系统的性能进行实际验证。结果发现,Web云平台结合便携式终端装置的SERS检测系统能够实现柑橘中TBZ残留快速精确定量检测,所构建系统的3次平行预测值最大变异系数为4.96%<5%;同时与HPLC检测结果进行比较,平均相对误差为2.52%,且两者无显著性差异。研究表明,所构建的SERS检测Web云平台为模型共享和光谱数据管理提供了基础,降低了模型修改和维护的难度,提高了柑橘中TBZ残留SERS检测系统的信息化水平。

基于表面增强拉曼光谱技术的柑橘中噻菌灵残留快速检测方法研究及系统开发

这是一篇关于柑橘,噻菌灵,表面增强拉曼光谱,快速检测,便携式检测装置,Web云平台的论文, 主要内容为柑橘营养丰富、味美可口,是我国种植面积广、消费需求高的经济作物之一。噻菌灵(TBZ)作为苯并咪唑类农药,广泛应用于柑橘的真菌病害防治,保障了柑橘产量和品质。但是,TBZ的使用也带来了柑橘中农药残留问题,引起了国家和社会的重视。现有的农药残留检测方法和系统存在检测时间长、仪器设备昂贵、无法现场化检测等不足。因此,本研究以表面增强拉曼光谱(SERS)技术为基础,结合化学计量学手段,构建了柑橘中TBZ残留快速、灵敏和稳定的定量检测方法,并基于该方法进一步开展了柑橘中TBZ残留的快速现场化检测系统的研发。主要研究内容如下:1、柑橘中噻菌灵残留的快速免标记SERS检测方法研究。针对传统检测方法时间长、操作复杂、需生物标记等问题,开展了金属纳米SERS基底结合化学计量学的柑橘中TBZ残留快速免标记SERS检测方法研究。首先,通过种子生长法制备了金纳米棒(Au NRs)作为拉曼增强基底。将制备的Au NRs与不同TBZ浓度的柑橘提取物混合,并采集其SERS光谱。然后,对原始光谱进行基线校正和光谱预处理以降低原始光谱的基线漂移和干扰。紧接着,使用不同的变量筛选算法结合偏最小二乘法(PLS)分别构建柑橘中TBZ残留的定量检测模型。最后,对所构建的定量检测模型的检测性能进行评价。结果发现,使用遗传算法(GA)进行变量筛选,并且结合PLS建立的定量检测模型效果最佳。GA-PLS模型的校正集决定系数和均方根误差为Rc2=0.9834、RMSEC=0.0929,预测集决定系数和均方根误差为Rp2=0.9737,RMSEP=0.1179,相对分析误差RPD=5.85。将所构建的方法与HPLC方法进行t检验,发现两种方法的检测结果无显著性差异(P>0.05)。研究表明,所构建的化学计量学结合SERS技术的检测方法可以实现柑橘中TBZ残留快速准确定量检测,为后续现场检测应用提供了基础。2、噻菌灵残留的便携式SERS检测系统开发。针对目前SERS检测装置携带不便、现场化检测困难、操作软件功能不足等情况,在柑橘中TBZ残留的SERS检测方法基础上,开发了基于Android平台的便携式SERS检测系统。检测系统由硬件系统和软件系统两个部分组成。硬件包括半导体激光发射器、拉曼探头、微型拉曼光谱仪、控制电路、蓝牙串口模块、安卓手机。软件是基于Java语言开发的Android应用程序,主要功能模块包括:蓝牙通信、光谱采集和预测、数据存储。所构建的便携式检测装置体积小巧,软硬件之间的蓝牙通信正常。对系统采集光谱的稳定性进行分析,采集三次0.5μg/m L TBZ的柑橘样本,结果显示其SERS光谱基本一致。研究表明,所开发的便携式SERS光谱检测系统能够运用于柑橘中TBZ残留的现场检测,操作简单且具有良好的稳定性。3、噻菌灵残留的SERS检测Web云平台搭建。针对便携式SERS检测系统光谱数据共享水平不高、模型维护困难等问题,采用浏览器/服务器(Browser/Server,B/S)模式搭建了柑橘中TBZ残留的SERS检测Web云平台,对现场终端设备进行平台化管理。首先,基于vue.js、Element UI、Echarts等设计了Web云平台的交互管理网页。Web云平台可以通过浏览器被访问,从而查看检测数据并上传或修改检测模型。然后,使用Spring boot、Tomact、My Batis等实现了检测数据的处理和存储。最后,通过IP地址和端口号,实现了便携式SERS检测装置与Web云平台的无线网络连接,从而构建了一套信息共享度高和模型维护方便的柑橘中TBZ残留SERS检测系统。在此基础上,使用10个独立的柑橘加标样本对检测系统的性能进行实际验证。结果发现,Web云平台结合便携式终端装置的SERS检测系统能够实现柑橘中TBZ残留快速精确定量检测,所构建系统的3次平行预测值最大变异系数为4.96%<5%;同时与HPLC检测结果进行比较,平均相对误差为2.52%,且两者无显著性差异。研究表明,所构建的SERS检测Web云平台为模型共享和光谱数据管理提供了基础,降低了模型修改和维护的难度,提高了柑橘中TBZ残留SERS检测系统的信息化水平。

本文内容包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主题。发布者:代码货栈 ,原文地址:https://m.bishedaima.com/lunwen/50252.html

相关推荐

发表回复

登录后才能评论