分享8篇关于WEB平台的计算机专业论文

今天分享的是关于WEB平台的8篇计算机毕业论文范文, 如果你的论文涉及到WEB平台等主题,本文能够帮助到你 基于红外热成像技术的肉鸡腿部异常检测系统设计与实现 这是一篇关于白羽肉鸡

今天分享的是关于WEB平台的8篇计算机毕业论文范文, 如果你的论文涉及到WEB平台等主题,本文能够帮助到你

基于红外热成像技术的肉鸡腿部异常检测系统设计与实现

这是一篇关于白羽肉鸡,腿部疾病,红外热成像,KNN,随机森林,WEB平台的论文, 主要内容为随着我国肉鸡产业的快速发展,集约化、规模化养殖水平得到不断提高,而在生产过程中由于养殖密度过大、管理不当、疫情等因素导致肉鸡腿病多发,制约了肉鸡的日常行为活动和生产效益。目前,对于肉鸡腿病的早期诊断,以人眼观察为主,耗时耗力,且主观性强。采用现代化技术手段来实现肉鸡腿病的自动检测,有利于提高肉鸡福利化养殖水平,减少疾病导致的经济损失。本文根据肉鸡养殖生产需要,以白羽肉鸡为研究对象,利用红外热成像技术、传感器技术、神经网络模型等设计了一种肉鸡腿部异常识别预警系统,该系统集成的算法模型可用于数据挖掘,自动检测并存储肉鸡腿部异常信息,通过WEB平台实现数据可视化管理。主要研究内容如下:(1)肉鸡腿部异常检测硬件系统设计:选用海康威视TB-1217A-3/PA热成像摄像机采集红外热图像与温度数据,设计基于NB-Io T技术的鸡舍环境信息感知系统,以实现鸡舍内环境温度、相对湿度及光照强度的实时监测,并通过网关将数据上传至云服务器。(2)肉鸡腿部温度反演模型研究:利用YOLOv4目标检测算法识别肉鸡感兴趣区域(Region of Interest,ROI),通过提取ROI温度,并结合环境因子,建立肉鸡腿部温度反演模型,对比了多元线性回归和KNN回归两种模型,平均相对误差分别为0.71%和0.43%,最终选择KNN回归作为温度预测模型。(3)肉鸡腿部异常分类识别模型研究:采用OSTU自适应阈值分割算法对红外热图像进行二值化处理,通过提取姿态特征并结合温度特征,建立了基于随机森林(Random Forest,RF)的肉鸡腿部异常分类识别模型,模型在正常、轻微异常、中度异常三个分类等级的识别准确率依次为97%、91%和94%,总体准确率为96%,通过不同模型对比,RF模型表现最优。(4)肉鸡腿部异常检测应用端系统实现:根据系统功能需求,采用My SQL数据库统一存储和管理环境监测信息、肉鸡腿部异常信息及管理员信息,基于Java开发的中间件可对多个文件夹执行监听、读取、处理等任务,基于轻量级框架Spring Boot开发了WEB后台服务,利用Java Script、HTML等技术进行WEB前端设计,通过引入Highcharts、Echarts等图表插件实现了数据的多样化展示,测试结果表明该系统具有良好的承载能力,可在生产环境中稳定运行。

基于红外热成像技术的肉鸡腿部异常检测系统设计与实现

这是一篇关于白羽肉鸡,腿部疾病,红外热成像,KNN,随机森林,WEB平台的论文, 主要内容为随着我国肉鸡产业的快速发展,集约化、规模化养殖水平得到不断提高,而在生产过程中由于养殖密度过大、管理不当、疫情等因素导致肉鸡腿病多发,制约了肉鸡的日常行为活动和生产效益。目前,对于肉鸡腿病的早期诊断,以人眼观察为主,耗时耗力,且主观性强。采用现代化技术手段来实现肉鸡腿病的自动检测,有利于提高肉鸡福利化养殖水平,减少疾病导致的经济损失。本文根据肉鸡养殖生产需要,以白羽肉鸡为研究对象,利用红外热成像技术、传感器技术、神经网络模型等设计了一种肉鸡腿部异常识别预警系统,该系统集成的算法模型可用于数据挖掘,自动检测并存储肉鸡腿部异常信息,通过WEB平台实现数据可视化管理。主要研究内容如下:(1)肉鸡腿部异常检测硬件系统设计:选用海康威视TB-1217A-3/PA热成像摄像机采集红外热图像与温度数据,设计基于NB-Io T技术的鸡舍环境信息感知系统,以实现鸡舍内环境温度、相对湿度及光照强度的实时监测,并通过网关将数据上传至云服务器。(2)肉鸡腿部温度反演模型研究:利用YOLOv4目标检测算法识别肉鸡感兴趣区域(Region of Interest,ROI),通过提取ROI温度,并结合环境因子,建立肉鸡腿部温度反演模型,对比了多元线性回归和KNN回归两种模型,平均相对误差分别为0.71%和0.43%,最终选择KNN回归作为温度预测模型。(3)肉鸡腿部异常分类识别模型研究:采用OSTU自适应阈值分割算法对红外热图像进行二值化处理,通过提取姿态特征并结合温度特征,建立了基于随机森林(Random Forest,RF)的肉鸡腿部异常分类识别模型,模型在正常、轻微异常、中度异常三个分类等级的识别准确率依次为97%、91%和94%,总体准确率为96%,通过不同模型对比,RF模型表现最优。(4)肉鸡腿部异常检测应用端系统实现:根据系统功能需求,采用My SQL数据库统一存储和管理环境监测信息、肉鸡腿部异常信息及管理员信息,基于Java开发的中间件可对多个文件夹执行监听、读取、处理等任务,基于轻量级框架Spring Boot开发了WEB后台服务,利用Java Script、HTML等技术进行WEB前端设计,通过引入Highcharts、Echarts等图表插件实现了数据的多样化展示,测试结果表明该系统具有良好的承载能力,可在生产环境中稳定运行。

基于红外热成像技术的肉鸡腿部异常检测系统设计与实现

这是一篇关于白羽肉鸡,腿部疾病,红外热成像,KNN,随机森林,WEB平台的论文, 主要内容为随着我国肉鸡产业的快速发展,集约化、规模化养殖水平得到不断提高,而在生产过程中由于养殖密度过大、管理不当、疫情等因素导致肉鸡腿病多发,制约了肉鸡的日常行为活动和生产效益。目前,对于肉鸡腿病的早期诊断,以人眼观察为主,耗时耗力,且主观性强。采用现代化技术手段来实现肉鸡腿病的自动检测,有利于提高肉鸡福利化养殖水平,减少疾病导致的经济损失。本文根据肉鸡养殖生产需要,以白羽肉鸡为研究对象,利用红外热成像技术、传感器技术、神经网络模型等设计了一种肉鸡腿部异常识别预警系统,该系统集成的算法模型可用于数据挖掘,自动检测并存储肉鸡腿部异常信息,通过WEB平台实现数据可视化管理。主要研究内容如下:(1)肉鸡腿部异常检测硬件系统设计:选用海康威视TB-1217A-3/PA热成像摄像机采集红外热图像与温度数据,设计基于NB-Io T技术的鸡舍环境信息感知系统,以实现鸡舍内环境温度、相对湿度及光照强度的实时监测,并通过网关将数据上传至云服务器。(2)肉鸡腿部温度反演模型研究:利用YOLOv4目标检测算法识别肉鸡感兴趣区域(Region of Interest,ROI),通过提取ROI温度,并结合环境因子,建立肉鸡腿部温度反演模型,对比了多元线性回归和KNN回归两种模型,平均相对误差分别为0.71%和0.43%,最终选择KNN回归作为温度预测模型。(3)肉鸡腿部异常分类识别模型研究:采用OSTU自适应阈值分割算法对红外热图像进行二值化处理,通过提取姿态特征并结合温度特征,建立了基于随机森林(Random Forest,RF)的肉鸡腿部异常分类识别模型,模型在正常、轻微异常、中度异常三个分类等级的识别准确率依次为97%、91%和94%,总体准确率为96%,通过不同模型对比,RF模型表现最优。(4)肉鸡腿部异常检测应用端系统实现:根据系统功能需求,采用My SQL数据库统一存储和管理环境监测信息、肉鸡腿部异常信息及管理员信息,基于Java开发的中间件可对多个文件夹执行监听、读取、处理等任务,基于轻量级框架Spring Boot开发了WEB后台服务,利用Java Script、HTML等技术进行WEB前端设计,通过引入Highcharts、Echarts等图表插件实现了数据的多样化展示,测试结果表明该系统具有良好的承载能力,可在生产环境中稳定运行。

基于红外热成像技术的肉鸡腿部异常检测系统设计与实现

这是一篇关于白羽肉鸡,腿部疾病,红外热成像,KNN,随机森林,WEB平台的论文, 主要内容为随着我国肉鸡产业的快速发展,集约化、规模化养殖水平得到不断提高,而在生产过程中由于养殖密度过大、管理不当、疫情等因素导致肉鸡腿病多发,制约了肉鸡的日常行为活动和生产效益。目前,对于肉鸡腿病的早期诊断,以人眼观察为主,耗时耗力,且主观性强。采用现代化技术手段来实现肉鸡腿病的自动检测,有利于提高肉鸡福利化养殖水平,减少疾病导致的经济损失。本文根据肉鸡养殖生产需要,以白羽肉鸡为研究对象,利用红外热成像技术、传感器技术、神经网络模型等设计了一种肉鸡腿部异常识别预警系统,该系统集成的算法模型可用于数据挖掘,自动检测并存储肉鸡腿部异常信息,通过WEB平台实现数据可视化管理。主要研究内容如下:(1)肉鸡腿部异常检测硬件系统设计:选用海康威视TB-1217A-3/PA热成像摄像机采集红外热图像与温度数据,设计基于NB-Io T技术的鸡舍环境信息感知系统,以实现鸡舍内环境温度、相对湿度及光照强度的实时监测,并通过网关将数据上传至云服务器。(2)肉鸡腿部温度反演模型研究:利用YOLOv4目标检测算法识别肉鸡感兴趣区域(Region of Interest,ROI),通过提取ROI温度,并结合环境因子,建立肉鸡腿部温度反演模型,对比了多元线性回归和KNN回归两种模型,平均相对误差分别为0.71%和0.43%,最终选择KNN回归作为温度预测模型。(3)肉鸡腿部异常分类识别模型研究:采用OSTU自适应阈值分割算法对红外热图像进行二值化处理,通过提取姿态特征并结合温度特征,建立了基于随机森林(Random Forest,RF)的肉鸡腿部异常分类识别模型,模型在正常、轻微异常、中度异常三个分类等级的识别准确率依次为97%、91%和94%,总体准确率为96%,通过不同模型对比,RF模型表现最优。(4)肉鸡腿部异常检测应用端系统实现:根据系统功能需求,采用My SQL数据库统一存储和管理环境监测信息、肉鸡腿部异常信息及管理员信息,基于Java开发的中间件可对多个文件夹执行监听、读取、处理等任务,基于轻量级框架Spring Boot开发了WEB后台服务,利用Java Script、HTML等技术进行WEB前端设计,通过引入Highcharts、Echarts等图表插件实现了数据的多样化展示,测试结果表明该系统具有良好的承载能力,可在生产环境中稳定运行。

基于红外热成像技术的肉鸡腿部异常检测系统设计与实现

这是一篇关于白羽肉鸡,腿部疾病,红外热成像,KNN,随机森林,WEB平台的论文, 主要内容为随着我国肉鸡产业的快速发展,集约化、规模化养殖水平得到不断提高,而在生产过程中由于养殖密度过大、管理不当、疫情等因素导致肉鸡腿病多发,制约了肉鸡的日常行为活动和生产效益。目前,对于肉鸡腿病的早期诊断,以人眼观察为主,耗时耗力,且主观性强。采用现代化技术手段来实现肉鸡腿病的自动检测,有利于提高肉鸡福利化养殖水平,减少疾病导致的经济损失。本文根据肉鸡养殖生产需要,以白羽肉鸡为研究对象,利用红外热成像技术、传感器技术、神经网络模型等设计了一种肉鸡腿部异常识别预警系统,该系统集成的算法模型可用于数据挖掘,自动检测并存储肉鸡腿部异常信息,通过WEB平台实现数据可视化管理。主要研究内容如下:(1)肉鸡腿部异常检测硬件系统设计:选用海康威视TB-1217A-3/PA热成像摄像机采集红外热图像与温度数据,设计基于NB-Io T技术的鸡舍环境信息感知系统,以实现鸡舍内环境温度、相对湿度及光照强度的实时监测,并通过网关将数据上传至云服务器。(2)肉鸡腿部温度反演模型研究:利用YOLOv4目标检测算法识别肉鸡感兴趣区域(Region of Interest,ROI),通过提取ROI温度,并结合环境因子,建立肉鸡腿部温度反演模型,对比了多元线性回归和KNN回归两种模型,平均相对误差分别为0.71%和0.43%,最终选择KNN回归作为温度预测模型。(3)肉鸡腿部异常分类识别模型研究:采用OSTU自适应阈值分割算法对红外热图像进行二值化处理,通过提取姿态特征并结合温度特征,建立了基于随机森林(Random Forest,RF)的肉鸡腿部异常分类识别模型,模型在正常、轻微异常、中度异常三个分类等级的识别准确率依次为97%、91%和94%,总体准确率为96%,通过不同模型对比,RF模型表现最优。(4)肉鸡腿部异常检测应用端系统实现:根据系统功能需求,采用My SQL数据库统一存储和管理环境监测信息、肉鸡腿部异常信息及管理员信息,基于Java开发的中间件可对多个文件夹执行监听、读取、处理等任务,基于轻量级框架Spring Boot开发了WEB后台服务,利用Java Script、HTML等技术进行WEB前端设计,通过引入Highcharts、Echarts等图表插件实现了数据的多样化展示,测试结果表明该系统具有良好的承载能力,可在生产环境中稳定运行。

可定制的制药企业信息管理WEB平台的设计与实现

这是一篇关于WEB平台,J2EE,MVC,表单定制,制药的论文, 主要内容为企业级应用系统比较复杂,因为其中存在着大量的业务逻辑,开发实现一个企业级应用系统工作量大、开发周期长。同时传统的企业级应用程序不便于维护,用户需求的变化往往都需要通过修改代码来满足。 因此,本文的主要研究工作是实现一个智能的制药企业Web开发平台,平台提供可定制功能,基于本平台的开发可以减少开发人员的工作量,快速的构建企业应用系统。对于新的需求,大部分可以在平台上通过Web页面定制的方式实现,减少代码的编写,对用户的要求做到快速响应和功能的实现。 本文平台在体系结构上采用业界先进的三层体系结构,即浏览器/应用服务器/数据库服务器,基于J2EE体系框架构建。在设计模式上应用了技术领先的MVC模式,保证了系统的高可扩展及高可维护性等。 一个灵活的、可定制的智能Web平台对于开发企业应用程序来说具有非常大的优势,可以实现快速开发和快速维护,在未来的发展中智能Web平台也必定会得到越来越多的应用。

基于红外热成像技术的肉鸡腿部异常检测系统设计与实现

这是一篇关于白羽肉鸡,腿部疾病,红外热成像,KNN,随机森林,WEB平台的论文, 主要内容为随着我国肉鸡产业的快速发展,集约化、规模化养殖水平得到不断提高,而在生产过程中由于养殖密度过大、管理不当、疫情等因素导致肉鸡腿病多发,制约了肉鸡的日常行为活动和生产效益。目前,对于肉鸡腿病的早期诊断,以人眼观察为主,耗时耗力,且主观性强。采用现代化技术手段来实现肉鸡腿病的自动检测,有利于提高肉鸡福利化养殖水平,减少疾病导致的经济损失。本文根据肉鸡养殖生产需要,以白羽肉鸡为研究对象,利用红外热成像技术、传感器技术、神经网络模型等设计了一种肉鸡腿部异常识别预警系统,该系统集成的算法模型可用于数据挖掘,自动检测并存储肉鸡腿部异常信息,通过WEB平台实现数据可视化管理。主要研究内容如下:(1)肉鸡腿部异常检测硬件系统设计:选用海康威视TB-1217A-3/PA热成像摄像机采集红外热图像与温度数据,设计基于NB-Io T技术的鸡舍环境信息感知系统,以实现鸡舍内环境温度、相对湿度及光照强度的实时监测,并通过网关将数据上传至云服务器。(2)肉鸡腿部温度反演模型研究:利用YOLOv4目标检测算法识别肉鸡感兴趣区域(Region of Interest,ROI),通过提取ROI温度,并结合环境因子,建立肉鸡腿部温度反演模型,对比了多元线性回归和KNN回归两种模型,平均相对误差分别为0.71%和0.43%,最终选择KNN回归作为温度预测模型。(3)肉鸡腿部异常分类识别模型研究:采用OSTU自适应阈值分割算法对红外热图像进行二值化处理,通过提取姿态特征并结合温度特征,建立了基于随机森林(Random Forest,RF)的肉鸡腿部异常分类识别模型,模型在正常、轻微异常、中度异常三个分类等级的识别准确率依次为97%、91%和94%,总体准确率为96%,通过不同模型对比,RF模型表现最优。(4)肉鸡腿部异常检测应用端系统实现:根据系统功能需求,采用My SQL数据库统一存储和管理环境监测信息、肉鸡腿部异常信息及管理员信息,基于Java开发的中间件可对多个文件夹执行监听、读取、处理等任务,基于轻量级框架Spring Boot开发了WEB后台服务,利用Java Script、HTML等技术进行WEB前端设计,通过引入Highcharts、Echarts等图表插件实现了数据的多样化展示,测试结果表明该系统具有良好的承载能力,可在生产环境中稳定运行。

基于B/S结构的地震氡异常信息系统研究与设计

这是一篇关于氡异常,地震研究,WEB平台,数据库的论文, 主要内容为在地震前兆观测中,地下流体观测是地震前兆观测的重要组成部分。国内外大量的研究表明,地下水中氡、氦、氢、汞、硫化氢等气体组分是反映地震前兆信息的灵敏组分,氡异常是目前国际上普遍认可的7大地震前兆之一。1994年在日本西南海岸发生的8.3级地震,震前观测到了氡的突变,引发了科学家展开氡与地震的关系研究。此后,在前苏联、中国、日本、美国、印度、欧洲等许多国家和地区展开了氡观测和地震研究以及构造活动并积累了大量的资料。在利用氡进行地震研究过程中,研究人员往往通过对氡宏观异常表征的分析总结,来归纳一些经验性与统计性的前兆异常信息,从而为防灾减灾和应急救援服务做好准备工作。本文通过对氡异常数据的管理方法、氡异常与地质环境的联系、地震对氡异常的影响因素做了研究分析,并开发一套地震氡异常信息系统来存储、分析历年来地震前后的氡异常相关数据,使用现今流行的B/S结构信息管理系统结合氡异常与地震的关系,为地震的研究提供科学参考。本文的主要研究内容和创新点如下:(1)通过调研氡异常映震效果与地震信息网络技术的国内外文献,分析目前氡异常映震技术尚存在的难点和未来地震信息网络技术手段的发展趋势。(2)对氡异常与地震关系进行了分析。从而得出氡浓度在映震效果中主要存在两种类型的变化:一种是阶段型变化,一种是脉冲型变化。该系统通过对氡浓度的异常变化的研究,得到有效的氡异常的地震前兆信息,进而为地震的研究提供帮助。(3)完成了基于WEB平台的地震氡异常信息系统的研制。首先通过系统需求分析,采用Eclipse+Tomcat的开发平台搭建系统的软件环境,并且对WEB平台的设计框架进行了详细的比较,提出了系统架构使用Spring框架来完成系统功能的方案,配合jQuery+Ajax技术设计了数据信息的界面展示框架,并通过JFreeChart接口实现氡浓度数据的成图,同时增加了文档管理与系统管理模块,在提高系统安全性的基础上,实现系统良好的可操作性和实用性。(4)完成地震信息与氡浓度数据的数据库设计。本文在系统需求的基础上,使用PowerDesigner16.5设计地震信息与氡浓度的数据库表结构以及建立表与表之间的关系。使用户在系统中能够分析出氡浓度在地震前后所发生的变化。

本文内容包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主题。发布者:毕设驿站 ,原文地址:https://m.bishedaima.com/lunwen/49723.html

相关推荐

发表回复

登录后才能评论