多视角融合的搜索广告相关性研究
这是一篇关于相关性,搜索广告,文本,广告商品,用户意图,商品属性,CTR的论文, 主要内容为搜索广告是广告系统的—种特定应用方式,根据用户的查询词向用户推送相关商品的广告。随着搜索引擎技术的不断发展,搜索广告在广告系统中所占份额也越来越大,其带来的经济效益也远远高于其他广告。搜索广告的相关性指推送商品广告与用户查询词的相关程度。由于搜索广告以用户查询词为依据,研究该相关性的意义极其重要。是否能够为用户推荐相关性更好的商品广告,使用户对搜索结果页面更满意,已经成为搜索引擎的重要目标。本文总结了搜索引擎与推荐系统目前的研究现状,以及国内外关于相关性的研究方法。并结合拼多多公司业务的需求提出了一种多视角融合的搜索广告相关性提升的方法,用以解决具体的相关性问题。本文设计与实现的保障高相关性的系统,作为搜索广告平台业务应用层的一部分,保证了公司相关性的要求,提高了用户体验度。针对相关性服务系统,本文从数据处理方案的设计、相关性多视角融合算法的设计以及相关性服务的设计三大模块去解决相关性的问题。针对本文提出的多视角融合的相关性研究,包含了文本相关性的角度、广告商品扩展推荐相关性的角度、商品属性排序相关性的角度以及用户意图识别相关性的角度。本文针对每个角度一一进行了设计与实现,从而实现最终的多视角融合的相关性。本文多视角融合的相关性研究在传统的机器学习模型基础上,结合了神经网络与深度模型的应用。目前,本项目已经正式上线运行。本文的方案对于拼多多公司搜索广告平台的点击率提高了 1.23%,消耗上涨1.44%,垃圾广告解决率提高了约40%。
文本信息增强的矩阵分解模型及其在推荐系统中的应用研究
这是一篇关于矩阵分解,推荐系统,文本,评论的论文, 主要内容为在过去的十多年中,推荐系统被学者们广泛研究,一些实用的推荐方法也被运用到了现实的工业系统之中,如移动软件市场、电商网站、电影网站等等。传统的推荐系统的方法主要集中研究用户对物品的评分,但是在现实的系统中,用户在对物品打分时,通常会留下一段文本描述自己的感受,表明自己评分的原因和立场。这些文本信息中通常包含丰富且重要的信息,如用户的偏好,物品的特性。但是,大多数已有的推荐系统模型常常会忽略这些文本信息,原因在于文本信息处理困难并常带有大量噪音、数据维度不一致、难以与传统模型相整合等等。本文提出了一种文本信息增强的矩阵分解模型,尝试同时利用评分和文本信息,并研究其在推荐系统中的各项应用。本文的贡献如下:一、提出了一个利用文本中名词的主题特征建模来增强用户特征矩阵的矩阵分解模型。二、进一步提出了一个同时利用文本中名词和修饰词来增强物品特征矩阵的矩阵分解模型。三、实现了一个基于本文提出的模型的原型系统,展示了本文的模型能在现实中被合理地利用。同时,依据提出的模型和方法,本文在现实的数据集上进行了大量的相关实验,证明了模型对文本信息的有效利用,并研究了模型在推荐系统上的各项应用,如提高推荐准确度、改善冷启动问题等等。
文本信息增强的矩阵分解模型及其在推荐系统中的应用研究
这是一篇关于矩阵分解,推荐系统,文本,评论的论文, 主要内容为在过去的十多年中,推荐系统被学者们广泛研究,一些实用的推荐方法也被运用到了现实的工业系统之中,如移动软件市场、电商网站、电影网站等等。传统的推荐系统的方法主要集中研究用户对物品的评分,但是在现实的系统中,用户在对物品打分时,通常会留下一段文本描述自己的感受,表明自己评分的原因和立场。这些文本信息中通常包含丰富且重要的信息,如用户的偏好,物品的特性。但是,大多数已有的推荐系统模型常常会忽略这些文本信息,原因在于文本信息处理困难并常带有大量噪音、数据维度不一致、难以与传统模型相整合等等。本文提出了一种文本信息增强的矩阵分解模型,尝试同时利用评分和文本信息,并研究其在推荐系统中的各项应用。本文的贡献如下:一、提出了一个利用文本中名词的主题特征建模来增强用户特征矩阵的矩阵分解模型。二、进一步提出了一个同时利用文本中名词和修饰词来增强物品特征矩阵的矩阵分解模型。三、实现了一个基于本文提出的模型的原型系统,展示了本文的模型能在现实中被合理地利用。同时,依据提出的模型和方法,本文在现实的数据集上进行了大量的相关实验,证明了模型对文本信息的有效利用,并研究了模型在推荐系统上的各项应用,如提高推荐准确度、改善冷启动问题等等。
协同训练框架下联合使用文本与图片的推荐方法研究
这是一篇关于推荐系统,多视图学习,协同训练,文本,图片,神经网络的论文, 主要内容为推荐系统通过分析用户对物品的历史行为来为用户推荐其可能感兴趣的物品。在实际场景中,用户对物品的历史行为信息往往是十分稀疏的,这会严重制约推荐系统性能。为了提升推荐系统的性能,现有的很多研究将物品的评论文本、图片等各种边信息加入到推荐系统中辅助推荐,取得了一定的效果。然而,现有的解决方法大多关注单一边信息,甚少有同时利用多种边信息的整体解决方案。事实上,同时利用多种边信息可以更加全面地表示用户偏好和物品属性,进而提升推荐算法的性能。因此,本文提出了协同训练框架下联合使用文本与图片的推荐方法,其主要创新点有:(1)首次使用协同训练这一多视图学习技术来整合文本和图片两种边信息用于推荐。该方法不仅使用文本和图片来提升了推荐算法性能,还为同时使用多种边信息用于推荐提供了一种新的思路。多视图学习是利用多源信息进行学习的重要方法。使用多视图学习可以让不同视图中的互补信息得到交换进而提升模型学习性能。协同训练是一种多视图学习技术,其利用具有不同视图的基模型互相标注无标记样本来实现信息的交换。面对高维异质的文本和图像数据,本文使用深度神经网络,分别从评论文本和物品图片中提取出低维的用户和物品的特征表示。然后使用提取出的特征构造了两个分别具有文本视图和图片视图的基模型。为了使两个视图的基模型互相学习,本文使用协同训练来联合训练两个不同视图的基模型。(2)提出了一种伪标记样本的可信性验证方法,防止协同训练过程中使用不可信的伪标记样本造成模型性能衰减。在协同训练的过程中,每个视图中的基模型会标注一部分无标记样本(得到的样本称为伪标记样本),用于另一视图中基模型的迭代训练。由于模型的标注结果不一定是可信的,本文提出了一种验证方法,保证伪标记样本的可信性,避免因为使用不可信的伪标记样本造成模型性能下降。最后,经过在三个公开数据集上进行大量的实验,结果表明本文的方法好于使用单种边信息的方法,并且退化实验显示了伪标记样本可信性验证方法的有效性。实验充分证明了本文方法的有效性,显示该方法能够有效提升推荐算法的性能。
协同训练框架下联合使用文本与图片的推荐方法研究
这是一篇关于推荐系统,多视图学习,协同训练,文本,图片,神经网络的论文, 主要内容为推荐系统通过分析用户对物品的历史行为来为用户推荐其可能感兴趣的物品。在实际场景中,用户对物品的历史行为信息往往是十分稀疏的,这会严重制约推荐系统性能。为了提升推荐系统的性能,现有的很多研究将物品的评论文本、图片等各种边信息加入到推荐系统中辅助推荐,取得了一定的效果。然而,现有的解决方法大多关注单一边信息,甚少有同时利用多种边信息的整体解决方案。事实上,同时利用多种边信息可以更加全面地表示用户偏好和物品属性,进而提升推荐算法的性能。因此,本文提出了协同训练框架下联合使用文本与图片的推荐方法,其主要创新点有:(1)首次使用协同训练这一多视图学习技术来整合文本和图片两种边信息用于推荐。该方法不仅使用文本和图片来提升了推荐算法性能,还为同时使用多种边信息用于推荐提供了一种新的思路。多视图学习是利用多源信息进行学习的重要方法。使用多视图学习可以让不同视图中的互补信息得到交换进而提升模型学习性能。协同训练是一种多视图学习技术,其利用具有不同视图的基模型互相标注无标记样本来实现信息的交换。面对高维异质的文本和图像数据,本文使用深度神经网络,分别从评论文本和物品图片中提取出低维的用户和物品的特征表示。然后使用提取出的特征构造了两个分别具有文本视图和图片视图的基模型。为了使两个视图的基模型互相学习,本文使用协同训练来联合训练两个不同视图的基模型。(2)提出了一种伪标记样本的可信性验证方法,防止协同训练过程中使用不可信的伪标记样本造成模型性能衰减。在协同训练的过程中,每个视图中的基模型会标注一部分无标记样本(得到的样本称为伪标记样本),用于另一视图中基模型的迭代训练。由于模型的标注结果不一定是可信的,本文提出了一种验证方法,保证伪标记样本的可信性,避免因为使用不可信的伪标记样本造成模型性能下降。最后,经过在三个公开数据集上进行大量的实验,结果表明本文的方法好于使用单种边信息的方法,并且退化实验显示了伪标记样本可信性验证方法的有效性。实验充分证明了本文方法的有效性,显示该方法能够有效提升推荐算法的性能。
本文内容包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主题。发布者:源码项目助手 ,原文地址:https://m.bishedaima.com/lunwen/50807.html